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Section 1

TNTRODUCTION

One of the fundamental goals of the Air Force in its Manned Threat

Quantification (MTQ) Program is to evaluate and predict the effectiveness

of a manned antiaircraft artillery (AAA) system. The main problem associ-

ated with it is to develop a mathematical model(s) for the gunner so that

the analysis and computer simulations of the man-in-the-loop system become

possible.

The mathematical modeling of a trained human operator (gunner) in a

simulated AAA system has been studied by many investigators during the past

20 years. A brief comparison of different human operator models was listed

in Kou and Glass (1977). The human operator was basically treated as a

feedback controller or compensator in the closed loop system. McRuer and

Krendel (1974), using a frequency domain analysis, represented the human

operator with a linear transfer function and a remnant element. Kleinman

and Perkins (1974), using a stochastic optimal control formulation, quanti-

fied the human operator as an optimal controller and estimator with respect

to a lost functional and constraints. Phatak and Kessler (1977), simpli-

fying the optimal control model, obtained a PID model. Finally, Kou et al.

(1979), using a reduced order observer, characterized the human operator as

a linear feedback controller and a Luenberger state reconstructor with all

system noises lumped into one remnant. All of these models were able to

explain their laboratory data under certain specified tracking conditions.

It has been observed (as expected) that a well trained human operator

responds consistently in performing his assigned control tasks; that crucial

fact is particularly true when the control tasks are relatively simple. In

the manned AAA system considered here, the human operator plays the role of

"stabilizing" the closed loop system. His control characteristics, of

course, depend on what kind of information is available for him. In this

regard, the human operator model consists of two parts: the first one

deals with how the human operator processes the available information for

his decisions; the second one deals with how his actual control outputs are

generated from some decision variables. To describe these two parts
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mathematically, both the time domain and the frequency domain approaches

can be applied. The optimal control model, the PID model, and the observer

model were all based on the time domain descriptions. The time domain

approach has the advantage of being able to describe a human operator's

dynamic responses in a more direct and natural way. See McRuer (1980) for

a discussion of the two approaches.

With the neglect of time delays in the system, it can be easily realized

that the observer model and the optimal control models have very similar

structures. In the observer model, a Luenberger observer provided state

reconstructions, whereas, in the optimal control model, a Kalman filter

provided the state estimations. The observer model became a very useful

model for the following reasons:

I. It has simple structures.

2. The parameters of the model can be identified from a systematic
curve-fitting program.

3. It requires shorter computer execution time.

4. It provides good model predictions.

NEED TO DEVELOP A BLANKING MODEL

In many situations, a human operator's tracking performance is subjected to

external interruptions. The interruptions are, in the real world, due to

electronic/optical countermeasures or weather conditions like fog, visi-

bility, etc. As in the previous studies, the human operator perceives his

tracking error as a displayed feedback signal. However, in this case, the

error signal is no longer available during the interruptions via blanking

the target. Using the optimal control model, Kleinman et al. (1979) has

done an initial study of this condition in which the effects of blanking on

tracking performance were modeled via increasing the observation noises.

In this report, we applied the observer formulation to develop a more

general model suitable for predicting tracking performance under random

interruptions.

6+



Section 2

THE MANNED AAA TRACKING SYSTEM

The general configuration of the manned AAA tracking system is shown in

Figure 1. A detailed description of the AAA simulator can be found in

Rolek (1977).
i

Target Trajectory

Si eT

---------- Tra kir4 eVisual
Sight Dynamics Display

i eg

(Machine)

(Man)

Gunner

Control (H-grip) j

Figure 1. General Configuration of the Manned AAA System

The machine part of the system consists of the tracking sight dynamics (the

plant), the target trajectory input, and the visual display (a two-

dimensional screen). The tracking sight dynamics relates the tracking

sight angle "0 " to the gunner's control output "P" via a rate control.g

The visual display provides the information of the tracking error to the

gunner. The tracking error "e" is the difference between the target angle

"0to and the tracking sight angle "0 ." The tracking system line of sight
T g

coincides with the center of the visual display. Therefore, the horizontal

and the vertical components of the error signal represent, respectively,

the azimuth and the elevation components of the tracking error seen by the

7
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gunner. The task of the gunner is to constantly direct the tracking sight

angle to the target angle. In this studv, a single gunner tracks both the

azimuth and the elevation target positions. The elevation tracking loop

can be decoupled from the azimuth component, where the azimuth tracking

loop cannot be separated from the elevation one. The reason for the latter

is due to the fact that the iisplayed azimuth tracking error depends on the

elevation tracking sight angle. However, one can treat the elevation

tracking loop independently at first, and then treat the azimuth tracking

loop with elevation tracking angle as an input variable. In this sense,

the two loops are treated as decoupled, and Figure 1 can be used to repre-

sent either the azimuth or the elevation tracking loop.

THE MATHEMATICAL MODEL OF THE TRACKING

SIGHT DYNAMICS AND THE VISUAL DISPLAY

The tracking dynamics can be approximately represented by a transfer func-

tion with a pole at the origin.

Specifically, we have:

S(t) = 1.34 v(t) for elevationg

,i (t) 1.28 Li(t) for azimuth

The displayed error "y" and the actual error "e" are related via the eleva-

tion tracking angle:

y(t) = c e(t)



I where

c 1 for elevation

c cos (6g) for azimuth
g

A6 =elevation tracking angle
g

Note that, under optical interruptions via blanking the target, the

displayed tracking error y(t) cannot be seen from the screen, but the

actual error e(t) ts still a,.fined the same way.

Iii



Section 3

GENERAL TRACKING CHARACTERISTICS OF A GUNNER

In his attempt to minimize the tracking error in an entire run, the gunner

has to adopt a feedback strategy. The gunner is actually involved with a

multistage decision problem with unpredictable disturbances (target motion)

driving the system. The gunner's main effort is to stabilize the closed

loop system. More specifically, if the displayed tracking error becomes

large. he actuates control input to reduce the error; if the target appears

moving faster and faster, he responds to it by increasing the gunsight

speed. Thus, the two important decision variables for the gunner are the

displayed error signal and the estimated target velocity generated by him.

lDue to the crossfeed between the target motion and the gunsight motion, the

gunner is usually "forced" to assume that the target will remain at a

constant speed within the next moment. By continuously perceiving how the

tracking errors change, the gunner can constantly reconstruct and update

the target velocity. However, if the tracking task becomes too difficult

for a gunner to follow, the gunner may simply change or give up the feed-

back strategy described above. The result is a so-called crossover

regressicn. The gunner may simply set the tracking sight ahead of the

target and prepare for future control action. Also, each gunner is

expected to have his own way to "compensate" for his previous misjudgments

or uncertainties in performing his tasks. (This latter part of response

characteristics cannot be modeled mathematically without further under-

standing of how human operators' uncertainties propagate within the task-

dependent system.)

Tracking under interruptions can also be understood or described via the

above decision variables and the feedback principles. Under interruptions

via blanking the target, the updating process is no longer possible due to

lack of feedback signals. The gunner continues to control the system based

on his internal perception of the environment.

10



Section 4

THE BLANKING EXPERIMENTS AND THE TRACKING DATA

Three trained subjects were asked to track a moving target (simulated

aircraft) on the display screen during an entire run of approximately

40 seconds. The subject used a rate control to direct the target sight to

follow the target. The visual screen was blanked periodically according to

one of the following five blanking conditions (last portion of a cycle is

blanked):

Blanking Duration Percentage of Time Blanked

(Cl) 1.5 seconds 25 percent

(C2) 3 seconds 25 percent

(C3) 6 seconds 25 percent

(C4) 3 seconds 50 percent

(C5) No blanking during the entire run (baseline)

There were four preprogrammed, deterministic, input target trajectories,

namely the 2 x 2 flyby, the 4 x 5 flyby, the recon, and the weapon

delivery. At each run, the subject had no information about (a) which of

the four trajectories was used as the driving input, and (b) which of the

five blanking conditions was being applied. With that experimental design,

the subject was considered as tracking unknown target motion under pseudo-

random interruptions. Each of the 20 tracking conditions was run 40 times

and the time history of the tracking errors recorded. The means and the

standard deviations were then compvted from the 40 replications. Thus, the

whole experiment generated 20 sets of ensembled trauking data per subject.

One subject's tracking data were selected for the modeling and simulation

study.

1i



SOME OBSERVATIONS ON THF TRACKING DATA

The three subjects had reasonably consistent tracking responses. The

"patterns" of the mean tracking errors and the standard deviations were

very similar. In some situations, the magnitudes of the tracking data

differed slightly. The difference could be explained as due to a subject's

tracking skill or his individual psychophysical parameters.

The degradation of tracking performance due to blanking was very

significant. The "induced errors" (relative to no blanking data) depended

on blanking duration, percentage of time blanked, and local characteristics

of the target motion. For example, if the target acceleration reversed its

direction within a long blanking, the peak tracking errors were signifi-

cantly much larger than that of the no blanking case.

12
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Section 5

OBSERVER THEORY AND STATE ESTIMATIONS

Luenberger observer theory has been applied successfully to the design of

deterministic feedback control systems in many areas during the past decade

(Luenberger, 1966 and 1971). The basic concept of asymptotic stability

associated with the observer theory can be generalized to a version of

stochastic stability for a stochastic estimator (Tse and Athens, 1970; Tarn

and Pasis, 1976). This section summarizes some basic ideas of the observer

theory and introduces necessary mathematical modeling techniques to be used

in developing a gunner model for tracking tasks with interrupted

observations.

Before proceeding, we introduce the following purely matrix-theoretic

lemma, which was considered as the cornerstone of the Luenberger observer

theory.

Assume that the two matrices A and C form an observable pair (A, C). Let K

be a matrix of appropriate dimension. Then, all the eigen values of the

matrix (A-KC) can be selected to have preassigned values by selecting a

suitable K. In particular, the matrix (A-KC) becomes a stable matrix for a

suitable K.

Let X(t), v(t), and Y(t) denote, respectively, the state, the control, and

the observation at time t of a linear controlled system (*):

X(t) = A X(t) + B 11(t)
(*)

Y(t) = C X(t)

In the manned AAA tracking system, the state X(t) has two components; the

first one represents the tracking error and the second one denotes the

13



target velocity. The human operator's control output p(t) depends on the

above two decision variables. However, only the tracking error Y(t) is

directly available to the human operator. The target velocity has to be

reconstructed as an unknown initial condition. The simple deterministic

setting (*) is used here for illustrating the basic modeling approach based

on the observer theory. In the actual applications, the control P(t) and

the observation Y(t) are allowed to contain the human operator's motor

noises and his observation noises, respectively.

The generalization from the simple setting (*) to a stochastic one was

carried out in a straightforward manner without rigorous mathematical

justifications.

If the --ystem (*) is observable, then the observation Y(s), 0 < s < t,

contains "enough" information to reconstruct the whole state X(t). The

previous lemma provides a necessary and sufficient condition for the system

to be observable. Let X(t) denote a reconstructcod state at time t, and

consider the following dynamics (called an observer):

X(t) = A X(t) + B P(t) + K [Y(t)CX(t) (**)

The initial condition X(o) can be assigned arbitrarily, and the observer

gain K is to be designed or identified.

Define the estimation error E(t) as

Z(t) - X(t) - X(t)

From (*) and (**), it can be shown easily that

E(t) = (A-KC) E(t) (5-1)

Z(o) = initial estimation error (5-2)

14



Thus, by selecting a suitable K, the estimated state X(t) generated from

(**) approximates the true state X(t) asymptotically for any initial error

E(o). The initial time does not need to be zero; it can be any specified

time instant.

The observer (**) reconstructs all the components of the state X(t). We

like to have a reduced-order observer which reconstructs only those state

components which are not directly observable. To proceed, let X(t) =

T
[Y(t), w(t)I , where Y(t) is observable, and w(t) needs to be recon-

structed. Write (*) as

Y = All Y + A 12  w + b , ji

w = A2 1 Y + A2 2 w + b 2 P

Y = [I :01

It can be shown that if (A, C) is an observable pair, then (A2 2 , A1 2 ) is

also an observable pair. Consider both Y(t) and p(t) as given; then the

following dynamics (called a reduced-order observer) provide a way to

update the state component w(t):

w = A2 2 w + A21 Y + b2 ji + k iI-All Y-A 1 2 w-b 1 vi] (5-4)

Define the estimation error as E(t) = w(t) - w(t), then we have

S= (A2 2 -k A1 2 ) (t (5-5)

Thus, for suitable k, the reduced-order observer (5-5) does indeed provide

an asymptotic reconstruction of the unobservable part w(t).

15



In the manned AAA tracking system, (5-3) takes the following form:

d__ + + S
dt

ST T1

Y = [1 0] K (5-6)

The human operator's internal model of the tracking system is not neces-

sarily exactly the same as above. Let the target model of the human

operator be written as:

d_ T = -g(t) e T (5-7)
dt

Then a mathematical description of the human operator's internal model of

the closed loop system can be expressed as follows:

y 0 1 y b
d + (5-8)
dt

0 -g(t) T

Y R[I 0O

Defining the estimation error of the target velocity as the difference

between the true target velocity ET [from (5-6)] and the estimated velocity

[from (5-8)], we have:

16



!3(t) - OT(t)

3(t) -[k+g(t)] ý(t) + 0T + g(t) eT (5-9)

To associate some intuitive meanings to the observer gain "k" in (5-9),

consider the following special situations: let the true target motion be

that of a constant velocity (i.e., 0T = 0), and let the human operator's

internal model of target motion be also that of a constant velocity [i.e.,

g(t) = 0]. Then (5-9) has the following simple solution:

-kt
S(t) = 3(O) e (5-10)

The observer gain k appears as the inverse of a time constant of the

exponential function in (5-10). Thus, the gain is a measure of how fast

the human operator reduces his initial estimation error ý(O) to zero. With

a fixed gain k, the larger the previous error is, the more improvement is
made in correcting the error (see Figure 2).

Constant target velocity

eT1o) k= 1.2

k= 0.48

- T ~ o -,- - - - - - - - k = 0
II

I • t

t

Figure 2. Exponential Reconstruction of Target Velocity

17



Note that if the human operator assumes that the target has acceleration

with local bandwidth g(t), then the "effective gain" becomes [k+g(t)].

This is also a theoretical justification for considering time-varying gains

in developing a general observer model. The interpretation also provides a

way of incorporating a human operator's adaptive internal model of target

motion into an observer model in a natural way.

It is interesting to compare formally the Luenberger observer with a Kalman

filter. With motor noises and observation noises taken into consideration,

we have the following stochastic system:

X = AX + By. + driving noises

Y = CX + observation noises

The associated Kalman filter provides an optimal state estimation for X(t)

(a random process) based on noise corrupted observations Y(s), 0 < s < t.

For example, see Nahi (no date) or Kushner (1971). The Kalman filter has

exactly the same form of dynamics as in (**). However, in this case, the

Kalman gain K(t) is no longer free, It is an "optimal gain" determined

from the associated Ricotti equations which, in turn, can be computed

independently of the observation data. The tern. [Y(t)-CX(t)] is a (random)

innovation process; it provides a new and unpredictable part of the infor-

mation, The filtering gain K(t) can be viewed as the optimal weighting

factor for the innovation [Y(t)-CX(t)] at time t. Without the assumption

of optimality, as the case in the observer approach, the gain K(t) can be

viewed as representing the human operator's estimation "strategy' condi-

tioned on his limitations and his tracking environments. The asymptotic

state estimation is, thus, merely a result of processing the information

"constructively" rather than optimally.

18



Section 6

OBSERVER MODEL WITH TIME VARYING GAINS

This section develops a general observer model for the manned AAA tracking

system. The gunner's tracking performance is quantified as a feedback

controller. The feedback available to him consists of the displayed signal

(observation) and the noavisual feedback generated through his control

interaction with the dynamics of the system (perception). With this under-

standing, we assume that the gunner has an internal model of the closed

loop system driven by his observation and his perception. It is natural to

further assume that the gunner's control output is completely based on that

internal model. Also, with the rate control in mind, it is not difficult

to realize that the gunner's whole tracking efforts are basically designee

to generate a key internal state variable--the target velocity. The gun-
ner's internal model of target velocity was considered as the key variable

in his feedback strategy. To quantify the gunner's internal target

velocity, we assume that the internal velocity is actually generated via a

Luenberger observer or state reconstructor. The associated observation or

reconstruction gains are, in general, time varying. The gains depend on

tracking conditions (information feedback), task difficulties (local trajec-

tory characteristics), tracking skill, and the gunner's psychophysical

parameters. Finally, we assume that the gunner'q feedback control law is

linear in his observation and his perception. The closed loop model struc-

ture is shown in Figure 3. Items I to 6 summarize the modeling assumptions.

19
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Define the state variables of the closed loop system as

X(t) = [x1(t), x2(t), x 3 (t)]T

where

x, (t) = y(t) = c e(t' = c (6T-tg) displayed tracking error

x 2 (t) = 6T(t) true target velocityIT
xý(t) = ý(t) = eT(t) - 0T(t) velocity estimation error

In lieu of the assumptions 1 to 6, we have

6 (t) =-b p(t)g

11c(t) = -ýl(t) y p(t) - Y2(t) 6(t)

ý(t) = -[k(t)c + g(t)] 3(t) + Tr(t) + g(t) eT(t) - kbcvm(t,W)

y p(t) = y(t) + V y(t,C)

S(t) = -P (t) + vm(t,W)

The above equations can be written in matrix form as

X(t) = A(t) X(t) + F OaT(t) + noise terms (6-1)

21



where

bc c (1-by) bcy2

A(t) 0 0 0 F

0 g(t) -[k(t)c + g(t)]

bcvm(t,w) - bc~Vy(t,w)

Noise terms = 0

-kbcv (t,w)
m
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Section 7

THE BLANKING MODEL AND PARAMETER IDENTIFICATIONS

The human operator's L.racking performance is generally degraded under

visual interruptions ,,ia blanking the target. This effect can be modeled

H directly via degrading the human operator's estimation gain k(t) and the

F control gain y(t). The induced uncertainties in performance can also be

represented in the operator's motor noises. Figure 4 shows a typical

situation of the effects of blanking on the gunner's capability to recon-

struct the target velocity.

True target velocity

Estimated velocity without
Bakgpeiblanking

F r . Ee oblanking- gng

Due to bak

(a Estimated velocity
T , with blanking

Figure 4. The Effects of Blanking--Degrading

the Observer Gain
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The blanking model used in the simulation studies was based on the

following additional modeling assumptions:

1. The gunner's internal model of target motion is of the form eT =

0 (no target acceleration is perceived by the gunner).

2. The gunner's observation noise can be lumped into the motor

noise. The covariance of the motor noise is assumed to be of the

form:,

E[Vm(t,L) Vm(t',w) [i + (,IT) + a3  T)

The noise parameters xi, ct, and %3 are allowed to have different

values for different blanking durations.

3. The observer gain k(t) and the controller gain y(t) are assumed

to decrease exponentially as the blanking proceeds, and ze

increase exponentially as the blanking stops (see Figure 5).

The time constants associated to the exponential functions are to be

identified from experimental data. Both theoretic arguments and actual

identification lead to the relation b • Y2 ; 1, we assume that y2 is a

coistant.

PARMETER IDENTIFICATIONS

The azimuth and the elevation curve-fitting identification programs

developed in Kou et al. (1978) were modified slightly (data format, time

step, etc.) to identify the base line parameters. The 2 x 2 flyby--no

blanking-tracking data were used to obtain the following parameters:

24



Elevation Tracking

k = 0.48, yI = -2.9, Y2 = -0.77

al1 = 0.0003, a2 = 0.009, U3 = 1.3

Azimuth Tracking

[ k = 1.2, yi = -3.0, Y2 = -0.78

a = 0.002, a, 0.003, a3 = 0.53

The time constants were identified from the 2 x 2 flyby--blanking

conditien 2--data:

T (y, blanking) = 2.32 seconds, i (Yi, recovery) = 1.92 seconds

T (k, blanking) = 13.0 seconds, T (k, recovery) = 4.0 seconds

II
k W)

(repeated)

S1- • 711Time
Blanking period Recovery

e.g. k(t) = k(o) exp ( l
T• (k, blanking)

Figure 5. Time Constants Related to Short-Term Memory

25
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Section 8

COMPUTER SIMULATION RESULTS

The blanking model together wi.... the identified parameters are ready to be

implemented on a CDC Cyber 175 computer for simulation studies. The model

predictions of the mean tracking errors and the standard deviations are

comptuted in the following way.

With a fixed time step A sufficiently small (A = 0.03 seconds in this

study), the (slow) time-varying system (6-1) can be discretized as follows:

XPn+l n Xn + Fn F CT ) + F. D (8-1)

Where

t n
n

Xn = X(tn)

Itn) = Vm (tn nW

Xn+I = X (tn+A)

n exp [A~tA

and

i t +A

F nt+ exp r A(tn) .s] ds
f L

t
n

Taking expectation of both sides of (8-1), we have

X = in Xn + In F 0T (tn) (8-2)

26



I
The covariance matrix P is defined as

n

From (8-1) and (8-2), it can be shown that the matrix P satisfies the

following equation: (

n+l n n n +n En

where

Q(t) = a1 + a 2 [ e T n 013 T(tn
5 2

Thus, by solving the equations (8-2) and (8-3), wc obtain the mean tracking

error from the first component of X and the standard deviation from then

square root of the first component [Pn (1, 1)] of Pn Figures 6 to 20

illustrate the typical simulation results for different trajectories and

different blanking conditions.

27
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Section 9

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDIES

Modeled as a linear feedback controller and a state reconstructor, the

gunner was "parameterized" by the control gains and the estimation gains.

These time-varying gains together with the noise covariances characterized

the gunner's tracking performance. The time-varying gains directly reflect

the gunner's tracking skill, tracking conditions, and his own psycho-

physical parameters. Hence, the gains were modeled and identified from the

experimental data.

The simulation results show very good model versus data matches. However,

as indicated from Figures 6 to 20, some peak tracking errors predicted by

the model tend to either overshoot or undershoot. This is due to the

nonadap ive internal model of target motion in the current simulation

[g(t) = 0]. In the observer formulation, the "local bandwidth" g(t) of the

internal velocity directly enters the observer gain as [k(t)+g(t)]. The

adaptive nature of the gunner's perception of target motion can be modeled

by continuously "updating" the gain. In other words, by modeling the gain

according to the gunner's perception of target acceleration, the overshoots

can be eliminated, as shown in Figure 8 (k = 1.2).

The idea of simultaneous parameter identifications and state estimations

has been explored recently in the literature of adaptive observers, for

examples, see Nuyan and Carroll (1979) and Kudva and Narendra (1974). The

Lyapunov function and the stability concept seem to be powerful tools for

describing the adaptive nature of human's responses. For example, the

observer gain can be adaptively adjusted to ensure only stable state esti-

mations rather than asymptotic state reconstructions. This is a very

Interesting technique to be pursued.
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APPENDIX A

THE COMPUTER SIMULATION PROGRAM

PROGRAM OWLS IMU

1. INeUT: ATTACH, TAPE 2
Where TAPE 2 HAS AZIMUTH AND ELEVATION TARGET
INFORMATION: T, AZ, AZD, AZDD, EL, ELD, ELDD

TYPE IN BLANKING CONDITIONS:

PERIOD = Blanking duration

Icycle = Duty Cycle =

1

Percentage of time blanked

2. OUTPUT: MEAN TRACKING ERRORS AND STANDARD DEVIATIONS:
AZERR, ELERR, AZSDM, ELSDM

REMARKS

This simulation program had been modified to a more general version which

was then included in the engagement program POO1. The modified version

took the control constraints due to the physical limitations into con-

sideration and had a general input blanking condition to replace the

periodical one.
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